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Introduction
GE Healthcare’s deep learning image reconstruction (DLIR) is the first 
Food and Drug Administration (FDA) cleared technology to utilize a deep 
neural network-based recon engine to generate high quality TrueFidelity 
computed tomography (CT) images. DLIR opens a new era for CT-image 
reconstruction by addressing challenges of filtered back-projection (FBP) 
and iterative reconstruction (IR). 

DLIR features a deep neural network (DNN), which was trained with high  
quality FBP data sets to learn how to differentiate noise from signals, 
and to intelligently suppress the noise without impacting anatomical 
and pathological structures. The resulting TrueFidelity CT images, with  

outstanding image quality and preferred noise texture, have the potential 
to improve reading confidence in a wide range of clinical applications, 
including imaging the head, whole body, cardiovascular, and for patients 
of all ages. DLIR is designed with fast reconstruction speed for routine 
CT use, even in acute care settings. 

This white paper will: first, take a look at the overall evolution of CT 
image reconstruction; second, explain the design, supervised training, and  
deployment of DLIR engine; and third, reveal early phantom and clinical 
evidence illustrating the performance of TrueFidelity on practical cases.

Challenges of Filtered Back-Projection and Iterative Reconstruction
Filtered back-projection (FBP) was the dominant algorithm used in image 
reconstruction for the first 30 years of CT because of its computational 
efficiency and accuracy. The algorithm lends itself nicely to parallel 
processing and allows images to be reconstructed in nearly real time 
as the patient is being scanned. From an accuracy point of view, the 
algorithm can reconstruct the “exact” replica of the scanned object when 
the input sinogram is “ideal.” These highly desired properties, however,  
come with significant limitations. FBP generally fails to model the 
non-ideal behaviors of the CT system. Departures from ideal behavior 
can come from the fundamental properties of X-ray physics (e.g., beam 
hardening and scatter), the statistical nature of the data acquisition 
(e.g., limited X-ray photon flux and electronic noise), geometric factors 
of the system (e.g., partial volume or finite X-ray focal spot size and 
detector cell size), and patient related factors (e.g., patient positioning 
and motion). These limitations often lead to higher radiation doses for 
patients in order to get acceptable image quality or result in reconstructed 
images of limited quality.1

To overcome the shortcomings of FBP, iterative reconstruction (IR) was  
introduced to CT.2,3 Instead of a closed-form solution as in FBP, IR relies  
on finding the solutions, which are the reconstructed images that match 
the reconstruction model in an iterative fashion. Modeling accuracy that 
drives reconstruction image quality often leads to increased complexity 
in the IR reconstruction process to approximate the non-ideal behavior 
of the data acquisition system and often slows down performance. The 
most comprehensive IR, the so-called model-based iterative reconstruction  
(MBIR), explicitly accounts for system statistics, X-ray physics, system 
optics, and patient characteristics all at the same time.4 To make the 
solution tractable (i.e. capable of being handled mathematically), the 
traditional ways of handling these models focus on simplifying complex 
and often intertwined phenomena with our theoretical understanding  
of the physics, statistics, image properties, and engineering. This approach 
manages the optimization of the solution with a limited number of  
parameters, typically less than a hundred, either calculated or  
manually tuned. 

Although MBIR and IR are quite successful in reducing dose to patients, 
their performance in terms of image quality may be less than satisfactory  
under the most difficult conditions. The visual impression of the  
reconstructed images often differs from the look and feel of images 
generated with FBP in ideal conditions due to the modeling complexity 
that the algorithm can manage. It is often reported that the noise texture 
appears “blotchy,” “plastic-looking” or simply “unnatural.”5 The degree  
of degradation from the expected appearance of a CT image by a trained 
radiologist is often linked to the strength of the IR algorithm: the stronger 
the IR, the more “plastic” the image looks. Compromised scanning 
conditions such as low dose make things worse, forcing the algorithm 
to work even harder, further degrading image appearance in order to  
produce results with low noise: non-linearities in the processing result 
in locally flat regions in homogeneous tissues and residual noise spikes 
around sharp edges such as bones and vessel boundaries in order to 
preserve high resolution detail. In routine clinical practice, therefore,  
radiologists often limit the IR to a level that they are comfortable with. 
As a result, IR often offers a trade-off between true dose reduction and 
reading diagnostic confidence.

Filtered Back-Projection (FBP) is accurate when radiation dose is  
high and the input sinogram is ideal, but in low dose settings, it  
is challenged with higher image noise and artifacts.

Iterative Reconstruction (IR) is successful in reducing radiation 
dose, but has image texture challenges with full strength due to 
limited complexity of the model.
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Figure 1: Generations of CT reconstruction technologies. The limitations of FBP and IR motivated GE to explore a new era of deep learning based CT image reconstruction. 
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The New Era of Deep Learning-Based Image Reconstruction
Faced with these limitations of IR, which was considered the state of the 
art, the development team at GE asked the following question: are these 
shortcomings the results of a lack of refinement of the IR technology or  
the fundamental limitations of a principled approach whereby modeling 
accuracy drives image quality? For many years, GE was at the forefront 
of pushing IR modeling further with spectacular results in concurrent  

noise reduction and spatial resolution performance, yet image texture  
and general appearance remained compromised relative to ideal  
expectations. Perhaps a new technology was needed to break through 
the modeling limitations of IR itself. Which technology had the potential 
to overcome this tradeoff? These questions motivated GE to explore 
deep learning–based image reconstruction (Fig. 1).

Why is Deep Learning so Compelling?
Deep learning (DL) is a subset of machine learning (ML), both of which 
are subsets of artificial intelligence (AI).6,7 AI is a broad term to cover the 
theory and development of computer systems to be able to perform 
tasks that normally require human intelligence. ML is based on the idea 
that systems can learn from data, patterns, and features to make decisions 
with minimal human intervention; and DL utilizes Deep Neural Networks 
(DNNs) to accomplish the same tasks that ML does. A DNN consists of 
multiple layers of mathematical equations, and it can find the correct 
mathematical manipulation to turn the input into the output, whether 
it be a linear or non-linear relationship.

DL technology has gained significant popularity in recent years because 
of advances in computational power and the development of modern 
algorithms for network topology and efficient training. The power of DL lies  
in its ability to handle complex models and a vast number of parameters 
far beyond the abilities of human engineers and scientists.6,7 Traditional 
algorithms rely on humans to manage parameters so that an optimal 
solution is tractable. The human-based optimization process limits the 
number of parameters to be manually optimized to typically less than 
a hundred. IR is particularly challenged in that regard since a growing 
number of parameters makes it more difficult to retain the necessary 
convergence properties of the algorithm. This limits the complexity of 
the models that can be incorporated into the iterative reconstruction 
process and, eventually, limits the overall performance of the algorithm. 
However, a DL approach does not require explicit models for the real 
system to be simplified to a few parameters. These models can be formed 
directly by the training process, with a significantly higher number of 
dimensions, and a number of parameters that can be handled in the 
millions, because computers can be used to train them concurrently. 

With appropriate network topology, a DL model can embody  
and represent the most complex relationships in a manner so far  
unattainable with conventional modeling approaches. DL thereby avoids 
many of the pitfalls of traditional algorithms and lends itself nicely to 
solving the fundamental challenges of IR. This led GE Healthcare to the 
creation of a deep learning-based image reconstruction engine.

Figure 2: Artificial intelligence encompasses both machine learning and deep learning. Deep learning, a subset of machine learning, uses deep neural networks  
to greatly enhance its accuracy.
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With the ability to handle complex models and a vast number of  
parameters through training process, deep learning holds the promise 
of solving the fundamental challenges of Iterative Reconstruction.

Figure 3: Deep learning 
outperforms the 
traditional algorithms 
that are limited by the 
number of models and 
parameters they can 
manage.

AMOUNT OF PARAMETERS

P
E

R
FO

R
M

A
N

C
E

Traditional Algorithms

Deep Learning



The Deep Learning-Based Image Reconstruction Engine
The design goal of deep learning image reconstruction is to provide a 
reconstructed image solution that outperforms existing model-based 
iterative reconstruction (MBIR) in terms of image quality, dose performance, 
and reconstruction speed. 

To achieve this ambitious goal, the DLIR engine is designed to employ 
a new imaging chain that incorporates technical and clinical knowledge 
accumulated over the past four decades of CT. 

The DLIR engine builds upon specific knowledge of the detailed design 
of the particular CT system. This includes knowledge of the conditioning of 
the collected data. Even more importantly, this knowledge is embedded 
within a DNN, which is capable of learning through a large number of 
real-world examples. Through these examples, the DLIR engine gradually 
optimizes the coefficients of its internal network as it figures out how 
to arrive at the optimal solution (i.e. the best image). 

Like in the human learning process, both the training data and the 
training process are important to the success of the DLIR engine creation: 
• Ground truth training data sets were created to establish the best 

training target for DLIR 
• The training phase involved training, validation, and testing, before 

the final product is ready 
• Once the DLIR engine has been trained and fully tested, the inference 

network uses the trained coefficients to deploy the new image  
reconstruction in a clinical environment 

Once it is deployed, the DLIR engine is fixed to allow for a predictable 
outcome in the field, representative of the imaging characteristics it 
has learned during the supervised training phase.

Figure 4: Schematic of the deep learning image reconstruction engine.

Both the training data and the training process are important  
to the success of the DLIR engine creation.

DESIGNING 
Creating layers of mathematical  

equations, (a Deep Neural Network,  
DNN) that can handle millions  

of parameters.

TR AINING
Inputting a low dose sinogram through the  

Deep Neural Network and comparing the output 
image to a ground truth image – a high dose 
version of the same data. These two images 
are compared across multiple parameters 

such as image noise, low contrast resolution, 
low contrast detectability, noise texture, etc. 
The output image reports the differences to 

the network via backpropagation which then 
strengthens some equations and weakens 

others and tries again. This process is repeated 
till there is accuracy between the output 

image and the ground truth image.

VERIF YING
The network is required to reconstruct clinical 
and phantom cases it has never seen before, 
including extremely rare cases designed to push 

the network to its limits, confirming  
its robustness.

Figure 5: Key phases of designing the deep learning image reconstruction engine.
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Ground Truth Training Target
In deep learning, the training target determines the output. The target 
of the DLIR engine is to learn the properties of the ground truth image 
sets that we created.

Ground truth training data are CT images reconstructed by FBP that 
can faithfully represent the scanned object.

FBP is a mathematically accurate reconstruction algorithm developed 
under the best data acquisition and reconstruction conditions (i.e., from 
ideal projection data acquired with high radiation dose). After being  
refined over many decades, FBP has a unique advantage – when the input  
projection data includes low noise statistics, the output image exhibits 
a “natural” noise texture that is well accepted by the radiology community. 

 “Ideal” projection data is obtained by optimizing the data acquisition to 
minimize all non-ideal behaviors of the CT system, such as scatter and 
other degradations inherent to the physics of X-ray interaction with matter, 
and correcting for the residual non-idealities, such as beam hardening.

The ground truth training data are based on images collected from both 
phantoms in the laboratory and patients in a clinical setting, and span a  
variety of acquisition protocols. As a result, DLIR was trained on a massive 
number of patient and phantom cases that cover different body habitus 
and anatomies, scan conditions, and clinical indications. 

Ground truth training data are CT images reconstructed by FBP that can faithfully represent the scanned object.

Supervised Training
The training process includes training, validation, and testing, which  
was supervised by GE Healthcare CT image quality experts and  
experienced radiologists.

Training starts with an objective task and selection of the training data,  
which includes the input data to the neural network and the corresponding 
expected output data. For each scanned object, both a high-dose,  
low-noise dataset and a low-dose, high-noise dataset are acquired. Images 
reconstructed with the high-dose dataset produce the ground truth. The  
DLIR engine is applied on the low-dose datasets to produce an estimation 
of the reconstructed images. Since the ground truth is known, it is used as 
the training target for the deep learning-based reconstruction engine.

The training process is outlined below:
• The DLIR engine generates the output image from an input sinogram  

that is acquired with low radiation dose
• The features of the temporary output image are compared to the 

ground truth image to find the differences in terms of image noise, 
noise texture, low-contrast resolution, high-contrast spatial resolution, 
and other metrics

• Millions of parameters representing the DNN are fine-tuned through 
embedded backpropagation based on those differences. The goal of 
this parameter optimization is to reduce the difference between the 
DLIR output and the ground truth images

• The above training process is repeated on thousands of training data 
until the DLIR engine can generate output images to accurately match 
the ground truth images in a large variety of realistic conditions 

• The DLIR engine then undergoes extensive testing whereby a large 
number of validation datasets that were not used in the training are 
reconstructed to ensure the robustness and accuracy of the DLIR engine 

Low dose
Raw data

High dose
Raw data

Backpropagation

DLIR engine FBPOutput image

Ground Truth image

Figure 6: A schematic of training process.
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Supervised Training (continued)

One of the key criteria of a successful training is the quality of the 
generated images. Compared to FBP images generated from the same 
scan data, DLIR images not only need to successfully remove noise, but 
also preserve noise texture, and anatomical and pathological details. This 
requirement forces the DLIR to undergo rigorous validation and testing.  
The validation and testing process required that the DLIR engine 
reconstruct numerous cases that it had never seen before, and many 
corner conditions, cases that are extremely rare and were specially 
designed to challenge the algorithm. To demonstrate the robustness 
of the DLIR algorithm, Figure 7 depicts images generated with the 
same scan data: the image on the left was reconstructed with FBP 
algorithm, the image in the middle was reconstructed with DLIR,  
and the image on the right was generated by subtracting DLIR image 
from the FBP image. The fact that anatomical structure is not present 
in the difference image, even for such complex anatomy with both 
low-contrast and high-contrast detail, is a clear demonstration of  
the robustness of DLIR.

Figure 7: Clinical images to demonstrate the robustness of DLIR algorithm. 

Inferencing and Deployment
Inferencing is a term used widely in the deep-learning community that 
essentially means using the trained neural network in practice. Unlike 
training, it doesn’t include a backward pass to compute error and update 
weights. It takes a network that has already been trained and uses that 
trained model to perform useful tasks. 

After the completion of supervised training, the DNN-based DLIR engine 
has been formulated with all parameters pre-computed and fixed, and  
is able to generate ground truth equivalent high-quality DICOM images – 
commercially known as TrueFidelity CT images. 

The DLIR engine is deployed to run natively on the reconstruction hardware  
of specific CT systems. The scan data acquired by the CT scanner goes 
through the DLIR engine only once to produce the TrueFidelity images 
(Figure 8). As examples shown in Figure 9, the resultant reconstruction  
throughput is fast enough for routine CT use, even in acute care settings.

DLIR provides three selectable reconstruction strength levels (low, medium, 
high) to control the amount of noise reduction. Without impacting  
reconstruction speed, the strength levels are selectable and can be built 
into the reconstruction protocols based on the clinical applications and 
radiologist preference. 

DNN-based  
deep learning image  

reconstruction engine On the CT consoleCT system

CT scan  
data

TrueFidelity  
CT images

Figure 8: Reconstruction 
flow of deep learning 
image reconstruction.

The training process includes training, validation and testing which was 
supervised by GE CT image quality experts and experienced radiologists.

A key criterion of successful training is for output images to not only 
successfully remove noise but also preserve noise texture, anatomical 
and pathological details, compared to the ground truth training target. 

At the completion of training, the DLIR engine can generate TrueFidelity 
CT images with fast reconstruction speed for routine CT use. 

Axial Acquisition
160 mm in Z axis
512 x 512 Matrix
0.625 mm thickness
256 images

≤50 seconds

Helical Acquisition
425 mm in Z axis
512 x 512 Matrix
0.625 mm thickness
681 images

≤85 seconds Figure 9: Examples of 
reconstruction speed 
of deep learning image 
reconstruction.

FBP DLIR FBP-DLIR
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Early Evidence: Phantom Studies
Phantom studies were designed to evaluate the performance of TrueFidelity on image noise reduction (Fig. 10), noise texture (Fig. 11),  
contrast-noise-ratio improvement (Fig. 12), and low contrast detectability improvement (Fig. 13).
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Figure 10: Evaluation of Image Noise Reduction
The Catphan® 600 phantom (The Phantom Laboratory, NY, US) is combined here with a 25*35 cm oval body annulus to simulate a typical adult 
body. The phantom’s uniform section (CTP486) was scanned on Revolution CT with 120 kV, CTDIvol = 3.27 mGy. Images were reconstructed with  
0.625 mm thickness using FBP, ASiR-V 50%, DLIR-L/M/H. The image noise (standard deviation in CT number in a uniform region of interest) was 
measured with a 4 cm* 4 cm ROI in the center of the image. 

Measured CT number standard deviation values, shown in (Fig. 10a), show that DLIR has better noise reduction performance than FBP and 
ASiR-V. The relative noise reduction with the baseline of FBP (Fig. 10b) illustrates a progressive image noise reduction as DLIR strength increases. 

Figure 11: Evaluation of Noise Texture via Noise Power Spectrum
The DLIR engine is trained to create TrueFidelity CT images with a noise texture similar to high dose FBP. 

Noise texture can be characterized by the noise power spectrum (NPS).8 NPS is a widely used metric for the characterization of noise patterns  
in CT images.9-13 It describes the noise power within a chosen region-of-interest (ROI) as a function of spatial frequency. When the noise power 
peaks at lower frequencies the image is observed to have coarse noise granularity, and when it peaks at higher frequencies it is observed to have 
finer noise granularity.9,11 The normalized NPS (nNPS), whereby the NPS is normalized by the area under the curve, is a fair method for comparing 
acquisitions with different dose levels.

The 20 cm water phantom (GE Healthcare, WI, US) was scanned on  
Revolution CT with two CTDIvol levels: 4.9mGy and 15.1mGy, and 2.5 mm  
thick images were reconstructed using FBP, ASiR-V 100% and DLIR-H  
(Fig. 11a). ASiR-V 100% and DLIR-H were selected for the highest potential  
visible change in image texture relative to the FBP reference at higher  
dose, for a challenging setup to compare the impact of the iterative  
reconstruction and deep-learning technologies on image appearance. The  
normalized NPS curves (Fig. 11b) show that images of low-dose DLIR have  
the same NPS characteristics as the images of high-dose FBP, whereas  
iterative reconstruction produces results that are clearly different. 
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Figure 12: Evaluation of Contrast-to-Noise Ratio (CNR) Improvement
The ACR 464 phantom (Gammex, WI, US) was scanned on Revolution CT 
with 120 kV, CTDIvol = 8.5 mGy and reconstructed with FBP, ASiR-V and 
DLIR L/M/H. The phantom Module-2 features a series of cylinders with 
different diameters ranging from 2 mm to 25 mm, all at 6HU difference 
from the background material, as illustrated in (Fig. 12a). 

The CNR was calculated based on two ROIs of 100 mm 2 in different regions,  
as shown in (Fig. 12b), and consistent with ACR accreditation testing.

The CNR was calculated as 

CNR = (Mean[ROI1]-Mean[ROI2]) ⁄ (SD[ROI1]),

where mean and SD denote mean and standard deviation in CT values 
inside the corresponding ROIs.14 

Both measured CNR (Fig. 12c) and normalized CNR (Fig. 12d) demonstrates 
that DLIR delivers up to 2X higher CNR than FBP, and CNR increases 
as a function of DLIR strength.

Figure 12a. Figure 12b.

FBP, CNR: 1.52 ASiR-V 50%, CNR: 2.06

DLIR-L, CNR: 2.12 DLIR-M, CNR: 2.50 DLIR-H, CNR: 3.04

Figure 12c.
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Figure 13: Evaluation of Low Contrast Detectability Improvement 
Low-contrast detectability (LCD) is crucial for some CT applications, for 
example, liver oncology imaging where neoplastic disease commonly 
manifests itself as a low-attenuating object within a background of 
slightly higher attenuation liver tissue. 

The LCD performance of DLIR was evaluated using a mathematical model 
observer’s method, recommended by the Joint MITA-FDA CT Image 
Quality Task Group to evaluate CT dose and image quality. Compared 
to a conventional human observer method, this method is objective 
and consistent, and correlates well with human observer results for 
clinically relevant scenarios.15 

The Channelized Hotelling Observer (CHO)1 was chosen for DLIR’s 
LCD assessment. Receiver Operating Characteristic (ROC) curves 
and the Area Under the ROC Curve (AUC) values were used for LCD 
performance evaluation. 

The Catphan 189 MITA Low Contrast Phantom (The Phantom Laboratary, 
NY, US) was imaged on Revolution CT with 120 kV, CTDIvol = 3.63 mGy 
and 4.72 mGy. This phantom (Fig. 13a) includes different low contrast 
objects of various sizes and intensities (Fig. 13b). The phantom scans were 
reconstructed with ASiR-V 100% and DLIR-H. 

Fig. 13c provides plots of the model observer ROC curves and AUC 
values and their associated error bars. The blue and green curves  
represent the ROC curves of ASiR-V and DLIR, respectively. The higher 
the true positive fraction the better the low contrast detection. The 
blue and green bars represent ASiR-V 100% and DLIR-H, respectively. 
The higher the AUC value the better the LCD performance. 

Both ROC curves and AUC values demonstrate that DLIR outperforms 
ASiR-V in low contrast detectability.

Figure 13a.

Figure 13c.

Figure 13b.
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Figure 14: Abdominal and Pelvic Imaging
Example of TrueFidelity CT images in abdominal and pelvic CT imaging. The patient with multiple metastatic cancer lesions was scanned on  
Revolution CT, images were reconstructed with 0.625mm thickness using FBP(A,D,G), ASiR-V (B,E,H) and DLIR(C,F,I). 

In axial, coronal and sagittal planes, DLIR demonstrates similar performance in reducing image noise, preserving noise texture and better  
visualizing the boundaries and internal structures of cancer lesions.

Scan type Helical

Rotation time, s 0.5

Pitch 1.375

kV 120

mA Smart mA

Slice, mm 0.625

Noise index 13

CTDIvol, mGy 6.7

DLP, mGy-cm 311

Eff. dose, mSv 4.7

k, *DLP 0.015

Early Evidence: Clinical Cases
Deep learning image reconstruction (DLIR) has been cleared by FDA for different anatomies with patients of all ages with all ages, including 
head, whole body, and cardiovascular applications. DLIR’s different levels (low, medium and high) can be used for different clinical tasks to  
improve image quality. The following clinical cases (Fig. 14 – 19) demonstrate how early adopters use DLIR to improve patient care.

A: FBP B: ASiR-V 50% C: DLIR-H

D: FBP E: ASiR-V 50% F: DLIR-H

G: FBP H: ASiR-V 50% I: DLIR-H
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Figure 15: Head Imaging
Example of TrueFidelity CT images in neuro CT imaging. The patient was scanned at 120 kV, 330 mA, with recorded radiation exposure of  
CTDIvol = 49.5 mGy. Images were reconstructed with 2.5 mm thickness using FBP(A), ASiR-V (B) and DLIR (C). DLIR images show decreased  
image noise, improved noise texture and grey/white matter differentiation. 

Courtesy of University Hospital Jena, Germany.

Scan type Axial 

Rotation time, s 1.0

Slice, mm 2.5

kV 120

mA 330

Noise index 3.4

CTDIvol, mGy 49.5

DLP, mGy-cm 694

Eff dose mSv 1.45

k, *DLP 0.0021

A: FBP B: ASiR-V 50% C: DLIR-H

Figure 16: Cardiovascular Imaging 
Example of TrueFidelity CT images in coronary CT angiography. DLIR used with cardiac high-resolution protocol for imaging the coronary arteries 
with calcified and soft plaque. Images reconstructed with DLIR (C, F-I) exhibited image quality improvement with reduced image noise, better 
defined anatomical edges and borders and enhanced visualization of fine details, when compared with FBP(A, D) and ASiR-V(B, E).

Courtesy of the Centre Cardiologique du Nord, France. 

Scan type 1-beat  
cardiac axial

Rotation time, s 0.28

Slice, mm 0.625

kV 100

mA 580

Kernel HD STD

CTDIvol, mGy 4.54

DLP, mGy-cm 63.6

Eff. dose, mSv 0.89

k, *DLP 0.014

A: FBP B: ASiR-V 50% C: DLIR-H

D: FBP E: ASiR-V 50% F: DLIR-H

G: DLIR-H H:DLIR-H I:DLIR-H
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Figure 17: Thoracic Imaging 
Example of TrueFidelity CT images in thoracic CT imaging. The patient has a history of pneumothorax and bronchiectasis, and has difficulty 
holding their breath. The whole chest was scanned within 1.2 s on Revolution CT using HyperDrive (a high pitch helical scan mode). Images were 
reconstructed with 0.625 mm thickness using FBP(A), ASiR-V (B), and DLIR-M(C,D). 

DLIR significantly reduces image noise and improves visualization of anatomical and pathological details to reveal moderate left pneumothorax, 
bilateral bronchiectasis with fibrosis and consolidation in right upper lobe.

Courtesy of Froedtert and Medical College of Wisconsin, USA.

Scan type HyperDrive

Rotation time, s 0.5

Pitch 1.531

Slice, mm 0.625

Scan length, mm 330

Scan time, s 1.2

kV 100

mA 202 – 387

Noise index 19.4

CTDIvol, mGy 4.4

DLP, mGy-cm 194

Eff. dose, mSv 2.7

k, *DLP 0.014

A: FBP B: ASiR-V 50%

C: DLIR-M D: DLIR-M

Figure 18: Metal Artifact Reduction
DLIR works synergistically with Metal Artifact Reduction (Smart MAR). The exam was completed in less than 1s on Revolution CT using  
HyperDrive (a high pitch helical scan mode). DLIR and Smart MAR work together to improve image quality and reveal hidden anatomical  
structure by removing metal artifacts. 

Courtesy of Froedtert and Medical College of Wisconsin, USA.

Scan type HyperDrive

Rotation time, s 0.35

Pitch 1.531

Slice, mm 0.625

Scan length, mm 370

Scan time, s 1

kV 140

mA 215 – 382

Noise index 11.4

CTDIvol, mGy 6.7

DLP, mGy-cm 315

Eff. dose, mSv 4.7

k, *DLP 0.015

A: FBP without MAR B: ASiR-V with MAR C: DLIR with MAR



Figure 19: Oncology Follow-up Scan with Lower Dose
This example shows images of an oncology patient (BMI = 33) who underwent two different CT scans: a prior standard dose CT protocol and  
a follow-up lower dose CT protocol. Images (A,C) are the venous phase of the prior scan reconstructed with ASIR-V 50%; images (B,D) are the 
venous phase of the follow-up scan reconstructed with DLIR-H. DLIR demonstrated improved image quality with 51% lower radiation dose. 

Courtesy of University Hospital Jena, Germany.

Prior exam Follow-up exam

Scan type Helical Helical

Rotation 
time, s

0.5 0.5

Pitch 1 1

Slice, mm 0.625 0.625

kV 120 120

mA Smart mA Smart mA

Noise 
index

27 35

CTDIvol, 
mGy

Non-contrast: 10.38
Arterial: 10.50
Venous: 10.38

Non-contrast: 4.54
Arterial: 4.80
Venous: 5.1

A: ASiR-V 50%  
Prior exam with 10.38 mGy

B: DLIR-H  
Follow-up exam with 5.1 mGy

C: ASiR-V 50% 
Prior exam with 10.38 mGy

D: DLIR-H 
Follow-up exam with 5.1 mGy

Conclusion
The era of deep learning-based CT image reconstruction has arrived in clinical practice. With an innovative design and advanced training method,  
GE Healthcare’s deep learning image reconstruction produces intelligent image noise reduction and restores preferred noise texture, leading to  
improved objective and subjective image quality compared to filtered back-projection and iterative reconstruction.

The resultant TrueFidelity images improve image quality in previously challenging areas, such as low-dose imaging, high-resolution imaging, 
and the evaluation of obese individuals. It also holds the potential to enable designing CT acquisition protocols at reduced radiation dose levels 
without sacrificing image quality, which is particularly attractive in screening examinations, pediatric imaging, and for repeat examinations. 

More evidence-based physics and clinical studies are needed to evaluate all aspects of this emerging technology and to enhance its clinical  
adoption to improve patient care. 
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Glossary
Artificial Intelligence (AI) 
A broad term to cover the theory and development of computer systems 
able to perform tasks that normally require human intelligence. 

Backpropagation 
The central mechanism by which deep neural networks can learn.  
It is the messenger telling the network whether or not the network 
made a prediction with imperfect results. In the context of learning, 
backpropagation commonly uses the gradient descent optimization 
algorithm to adjust the weight of neurons by calculating the gradient 
of the loss function.

Deep learning (DL) 
A subset of machine learning, DL utilizes deep neural networks which 
consist of layers of mathematical equations and millions of connections 
and parameters that get trained and strengthened based on the 
desired output.

Deep learning image reconstruction 
A CT image reconstruction technique that utilizes deep neural networks 
to generate CT images. 

Deep neural network (DNN) 
An artificial neural network with multiple layers of mathematical 
equations and millions of connections and parameters that get 
trained and strengthened based on the desired output.

DLIR-low/medium/high 
Three selectable reconstruction strength levels (Low, Medium, High) to 
control the amount of noise reduction. Without impacting reconstruction 
speed, the strength levels are selectable and can be built into  
reconstruction protocols based on the clinical applications and  
radiologist preference.

Ground truth training data 
Refers to millions of CT images reconstructed by FBP that faithfully 
represent the scanned object, and that are used to train the DLIR 
engine to generate TrueFidelity CT images. 

Inferencing 
Using the trained neural network in practice. Unlike training, it doesn’t 
include backpropagation to compute the error and update the DNN 
weights. It takes a network that has already been trained and uses 
that trained model to perform useful tasks. 

Machine learning (ML) 
A branch of artificial intelligence based on the idea that systems can 
learn from data, patterns, and features to make decisions with minimal 
human intervention. 

Mathematical model observer method 
An objective method to evaluate low contrast detectability, which is 
recommended by MITA-FDA CT Image Quality Task Group.

Noise power spectrum (NPS) 
A widely used metric for the characterization of noise patterns in CT 
images. It describes the noise texture within a chosen region-of-interest 
as a function of spatial frequency. 

TrueFidelity deep learning image reconstruction 
A GE Healthcare designed, FDA cleared, deep neural network based CT 
image reconstruction technology to generate TrueFidelity CT images 
with outstanding image quality and preferred image noise texture.

TrueFidelity CT Images 
The commercial name of high-quality CT images generated by  
GE Healthcare’s deep learning image reconstruction engine.
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